Algebraic Differentiability Theorem

Algebraic Differentiability Theorem

Let f,g:IR where I is an interval, cI. Suppose f,g are both differentiable at c. Then αR then:

  1. αf
  2. f+g
  3. fg
  4. fg (assuming g(c)0)
    Are all differentiable at c. Further we can say:
  5. (αf)(c)=αf(c)
  6. (f+g)(c)=f(c)+g(c)
  7. (fg)(c)=f(c)g(c)+f(c)g(c)
  8. If g(c)0 then:
(fg)(c)=f(c)g(c)f(c)g(c)g(c)2

For a lot of these we'll be using the Algebraic Limit Theorem for Functional Limits

Proof

(αf)(c)=limxc(αf)(x)(αf)(c)xc=limxcαf(x)αf(c)xc=limxc(αf(x)f(c)xc)=αlimxcf(x)f(c)xcALT=αf(c)
(f+g)(c)=limxc(f+g)(x)(f+g)(c)xc=limxcf(x)+g(x)f(x)g(x)xc=limxc(f(x)f(c)xc+g(x)g(c)xc)=limxcf(x)f(c)xc+limxcg(x)g(c)xcALT=f(c)+g(c)
  1. Notice here that for the limxcg(x)=g(c) because Differentiability Implies Continuity:
(fg)(c)=limxc(fg)(x)(fg)(c)xc=limxcf(x)g(x)f(c)g(c)xc=limxcf(x)g(x)f(c)g(x)+g(x)f(c)g(c)f(c)xc=limxcf(x)f(c)xcg(x)+g(x)g(c)xcf(c)=limxcf(x)f(c)xcg(x)+limxcg(x)g(c)xcf(c)ALT=limxc(f(x)f(c)xc)limxcg(x)+limxc(g(x)g(c)xc)limxcf(c) ALT=f(c)g(c)+g(c)f(c)
  1. Assuming g(c)0:
(fg)(c)=limxc((fg)(x)(fg(c))xc)=limxcf(x)g(x)f(c)g(c)xc=limxcf(x)g(c)f(c)g(x)g(x)g(c)(xc)=limxcf(x)g(c)f(c)g(c)+f(c)g(c)f(c)g(x)g(x)g(c)(xc)=limxc1g(x)g(c)(f(x)f(c)xcg(c)f(x)g(x)g(c)xc)=limxc1g(x)g(c)(f(c)g(c)f(c)g(c))ALT=f(c)g(c)f(c)g(c)g(c)2