Common Findings of Homomorphisms
Let G , H be Groups and let φ : G → H be a Homomorphism (or Group Morphism) . Then:
φ ( 1 G ) = 1 H where 1 G , 1 H are the identities of G , H respectively.
φ ( g − 1 ) = φ ( g ) − 1
φ ( g n ) = φ ( g ) n for all n ∈ Z
Ker ( φ ) is a Subgroup of G . (see Kernel )
im ( φ ) , the image of G under φ , is a subgroup of H .
Proof
φ ( 1 G ) = φ ( 1 G 1 G ) = φ ( 1 G ) φ ( 1 G ) so then using Cancellation Theorem then (1) holds.
φ ( 1 G ) = φ ( g g − 1 ) = φ ( g ) φ ( g − 1 ) and using (1) then this equals 1 H . Hence:
1 H = φ ( g ) φ ( g − 1 ) Multiplying both sides on the left by φ ( g ) and simplifying gives (2).
See 16 Homomorphisms, Isomorphisms#1 .
Since 1 G ∈ Ker ( φ ) then the kernel is not empty. Let x , y ∈ Ker ( φ ) , that is φ ( x ) = φ ( y ) = 1 H . Then:
φ ( x y − 1 ) = φ ( x ) φ ( y − 1 ) = φ ( x ) φ ( y ) − 1 = 1 H 1 H − 1 = 1 H that is x y − 1 ∈ Ker ( φ ) . By the Subgroup#The Subgroup Criterion (combining both), then Ker ( φ ) ≤ G .
Since φ ( 1 G ) = 1 H then the identity of H lies in the image of φ , so im ( φ ) is nonempty. If x , y are in im ( φ ) , say x = φ ( a ) , y = φ ( b ) , then y − 1 = φ ( b − 1 ) then by (2) then x y − 1 = φ ( a ) φ ( b − 1 ) = φ ( a b − 1 ) as φ is a homomorphism. Now since x y − 1 ∈ im ( φ ) then it is a subgroup of H by the subgroup criterion.
☐