Algebraic Limit Theorem for Functional Limits

Let f,g:AR where AR and c is a Limit Point of A. Let L,MR. If:

limxcf(x)=L,limxcg(x)=M

then:

  • limxc[αf(x)]=αL for all αR.
  • limxc[f(x)+g(x)]=L+M
  • limxc[f(x)g(x)]=LM
  • limxcf(x)g(x)=LM provided M0.

Proof

Use the Sequential Criterion For Functional Limits, but now using the Limit Laws (Algebraic Limit Theorem) for sequences for each.