Absolute Convergence Test

ACT (Absolute Convergence Test)

If |an| converges, then an converges.

Proof
Let ε>0. Since |an| converges, then we can choose NN such that any n>mN implies:

||am+1|++|an||<ε

Choose any n>mN. Then:

|am+1++an||am+1|++|an|Δ Inequality=||am+1|++|an||<ε

Thus the an is Cauchy, so then an converges.