The Joint Probability Density Function for Two Continuous Random Variables

Definition

Let X,Y be continuous rvs. Then f(x,y) is a joint probability density function for X,Y if for any two-dimensional set A:

P((X,Y)A)=Af(x,y)dxdy

In particular, if A is a rectangle A=[a,b]×[c,d] then:

P((X,Y)A)=P(aXb,cYd)=abcdf(x,y)dydx
Definition

A joint pdf of continuous rvs X1,X2,,Xn is a function f(x1,x2,,xn) such that for any n intervals [a1,b1],,[an,bn] then:

P(a1X1b1,,anXnbn)=a1b1anbnf(x1,,xn)dxndx1

More generally, for any n-dimensional set A consisting of values for x1,,xn then P((X1,,Xn)A) is the multiple integral of f over the region A.