Ch 7 - 13, 17, 33

7.13 (forgor k in c)

Question

Pasted image 20241025070203.png

Proof

a.

20302030f(x,y)dydx=k20302030x2+y2dydx1=k3800003k=3380000

b.

P(XY<26)=202620263380000(x2+y2)dydx.30

c.

P(|XY|<2)=P(XY<2YX<2)=3380000(202220x+2(x2+y2)dydx+2230x2x+2(x2+y2)dydx).3878

d. We want pX(x) which is:

pX(x)=all yf(x,y)dy=2030(x2+y2)dy=10x2+[y33]2030=10x2+190003

for x[20,30].

e. Likely not. Notice by symmetry that:

pY(y)=10y2+190003pX(x)pY(y)=(10x2+1900003)(10y2+190003)=100x2y2+

Which clearly isn't f(x,y). So they are not independent.

7.17

Question

Pasted image 20241025073104.png

Proof

Here we have:

pX(x)=ex,pY(y)=eyf(x,y)=pXpY=e(x+y)

a. We just found that f(x,y)=e(x+y).
b.

P(X,Y1)=0101e(x+y)dydx.3996

c.

P(X+Y2)=0202xe(x+y)dydx.5940

d. We want to find 1X+Y2 is a similar problem, except we remove the triangular region showed below:

Thus we have:

P(1X+Y2)=P(X+Y2)P(X+Y1).59400102xe(x+y)dydx.5940.4968=.0972

7.33

Question

Pasted image 20241025074710.png
See 7.13 above.

Proof

pX=10x2+μX=all xxpX(x)dx