Ch 3 - 13, 17, 31

3.13

Question

Pasted image 20241003165937.png
Pasted image 20241003170300.png

Proof
a.

P(X3)=P(X=0)+P(X=1)+P(X=2)+P(X=3)=.10+.15+.20+.25=.70

b.

P(X<3)=.10+.15+.20=.45

c.

P(X3)=.25+.20+.06+.04=.55

d.

P(2X5)=.20+.25+.20+.06=.71

e.

P(2X4)=P(X=2)+P(X=3)+P(X=4)=.20+.25+.20=.65

f.

P(X<3)=.10+.15+.20=.45

3.17

Question

Pasted image 20241003170912.png

Proof
Here we have WY=0,TY=1,.... So then we get the Probability Distribution, PMF:

Y 0 1 2 3
p(Y) .3 .4 .2 .1
For each one. For both we have to consider all the possiblities, where we mutliply the probabilties since it's given the two magazines arriving are independent:
Y1=0 Y1=1 Y1=2 Y1=3
Y2=0 .09 .12 .06 .03
Y2=1 .12 .16 .08 .04
Y2=2 .06 .08 .04 .02
Y2=3 .03 .04 .02 .01
Then to get the real Y for the number of days for both magazines, we just do:
p(Y=i)=max(Y1,Y2))ip(Y1,Y2)

So then:
p(Y=0)=.09,p(Y=1)=.12+.12+.16=.40...
We summarize in the table:

Y 0 1 2 3
p(Y) .09 .40 .32 .19

3.31

Question

Pasted image 20241003172649.png

Proof
a.

E(X)=(8)(.05)+(16)(.10)+(32)(.35)+(64)(.40)+(128)(.10)=51.6GB

So a USB drive has, on average, around 51.6GB, or a USB drive closer to this amount is more common.

b.

Var(X)=(851.6)2(.05)+(1651.6)2(.10)++(12851.6)2(.10)=1001.44 GB2

c.

σX=Var(X)31.646 GB

d.

Var(X)=E(X2)E(X)2=(8)2(.05)+(16)2(.10)++(128)2(.10)(51.6)2=36642662.56=1001.44GB2